-15x^2-154x-25=0

Simple and best practice solution for -15x^2-154x-25=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -15x^2-154x-25=0 equation:


Simplifying
-15x2 + -154x + -25 = 0

Reorder the terms:
-25 + -154x + -15x2 = 0

Solving
-25 + -154x + -15x2 = 0

Solving for variable 'x'.

Factor out the Greatest Common Factor (GCF), '-1'.
-1(25 + 154x + 15x2) = 0

Ignore the factor -1.

Subproblem 1

Set the factor '(25 + 154x + 15x2)' equal to zero and attempt to solve: Simplifying 25 + 154x + 15x2 = 0 Solving 25 + 154x + 15x2 = 0 Begin completing the square. Divide all terms by 15 the coefficient of the squared term: Divide each side by '15'. 1.666666667 + 10.26666667x + x2 = 0 Move the constant term to the right: Add '-1.666666667' to each side of the equation. 1.666666667 + 10.26666667x + -1.666666667 + x2 = 0 + -1.666666667 Reorder the terms: 1.666666667 + -1.666666667 + 10.26666667x + x2 = 0 + -1.666666667 Combine like terms: 1.666666667 + -1.666666667 = 0.000000000 0.000000000 + 10.26666667x + x2 = 0 + -1.666666667 10.26666667x + x2 = 0 + -1.666666667 Combine like terms: 0 + -1.666666667 = -1.666666667 10.26666667x + x2 = -1.666666667 The x term is 10.26666667x. Take half its coefficient (5.133333335). Square it (26.35111113) and add it to both sides. Add '26.35111113' to each side of the equation. 10.26666667x + 26.35111113 + x2 = -1.666666667 + 26.35111113 Reorder the terms: 26.35111113 + 10.26666667x + x2 = -1.666666667 + 26.35111113 Combine like terms: -1.666666667 + 26.35111113 = 24.684444463 26.35111113 + 10.26666667x + x2 = 24.684444463 Factor a perfect square on the left side: (x + 5.133333335)(x + 5.133333335) = 24.684444463 Calculate the square root of the right side: 4.968344238 Break this problem into two subproblems by setting (x + 5.133333335) equal to 4.968344238 and -4.968344238.

Subproblem 1

x + 5.133333335 = 4.968344238 Simplifying x + 5.133333335 = 4.968344238 Reorder the terms: 5.133333335 + x = 4.968344238 Solving 5.133333335 + x = 4.968344238 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-5.133333335' to each side of the equation. 5.133333335 + -5.133333335 + x = 4.968344238 + -5.133333335 Combine like terms: 5.133333335 + -5.133333335 = 0.000000000 0.000000000 + x = 4.968344238 + -5.133333335 x = 4.968344238 + -5.133333335 Combine like terms: 4.968344238 + -5.133333335 = -0.164989097 x = -0.164989097 Simplifying x = -0.164989097

Subproblem 2

x + 5.133333335 = -4.968344238 Simplifying x + 5.133333335 = -4.968344238 Reorder the terms: 5.133333335 + x = -4.968344238 Solving 5.133333335 + x = -4.968344238 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-5.133333335' to each side of the equation. 5.133333335 + -5.133333335 + x = -4.968344238 + -5.133333335 Combine like terms: 5.133333335 + -5.133333335 = 0.000000000 0.000000000 + x = -4.968344238 + -5.133333335 x = -4.968344238 + -5.133333335 Combine like terms: -4.968344238 + -5.133333335 = -10.101677573 x = -10.101677573 Simplifying x = -10.101677573

Solution

The solution to the problem is based on the solutions from the subproblems. x = {-0.164989097, -10.101677573}

Solution

x = {-0.164989097, -10.101677573}

See similar equations:

| 16v^3w^6+28v^5w^7y^2= | | 8t^2-4t^2= | | 10x^2=2x(h) | | Y-1=100 | | 16v^3w^6= | | 146-p^2=0 | | 8t^2+9t= | | h+1/4h+1/2h=x | | 3s-9s= | | -24x^-2y^5/9x^-8y^-7 | | 9d-3d= | | (9)(X)=18 | | X-6y+z=-12 | | 9-6x-3=4x+8 | | x+34=35 | | 1=8-2x | | 3x/2-9=5/3x+6 | | 3x/2-9=5/3+6 | | 9x+3y-5z=21 | | 6x+8=3x+9 | | 2x^-5y^7/14x^6y^3 | | -2(x+3)=4(x+11) | | x+13x+36= | | -10x+5=2x+6 | | -13x+7y=-3 | | x+2x+3x/2=6 | | 1+2i/-2+3i | | (6x-6/x+3)(x^2-3x-18/6x^2-6) | | (3-5)^2+(-24)/(3)(-2) | | 3/2(x+3)=4/5x-8 | | -5(a+2k)-8(-4+5k)= | | .9a^2=5.4a-4 |

Equations solver categories